Algebraic methods in the theory of generalized Harish-Chandra modules
نویسندگان
چکیده
This paper is a review of results on generalized Harish-Chandra modules in the framework of cohomological induction. The main results, obtained during the last 10 years, concern the structure of the fundamental series of (g, k)−modules, where g is a semisimple Lie algebra and k is an arbitrary algebraic reductive in g subalgebra. These results lead to a classification of simple (g, k)−modules of finite type with generic minimal k−types, which we state. We establish a new result about the Fernando-Kac subalgebra of a fundamental series module. In addition, we pay special attention to the case when k is an eligible r−subalgebra (see the definition in section 4) in which we prove stronger versions of our main results. If k is eligible, the fundamental series of (g, k)−modules yields a natural algebraic generalization of Harish-Chandra’s discrete series modules. Mathematics Subject Classification (2010). Primary 17B10, 17B55.
منابع مشابه
GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE
We make a first step towards a classification of simple generalized Harish-Chandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simp...
متن کاملTo the memory of Armand Borel GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE
We make a first step towards a classification of simple generalized HarishChandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simpl...
متن کاملAn Analytic Riemann-hilbert Correspondence for Semi-simple Lie Groups
Geometric Representation Theory for semi-simple Lie groups has two main sheaf theoretic models. Namely, through Beilinson-Bernstein localization theory, Harish-Chandra modules are related to holonomic sheaves of D modules on the flag variety. Then the (algebraic) Riemann-Hilbert correspondence relates these sheaves to constructible sheaves of complex vector spaces. On the other hand, there is a...
متن کاملGeneralized Harish-Chandra Modules: A New Direction in the Structure Theory of Representations
Let g be a reductive Lie algebra over C. We say that a g-module M is a generalized Harish-Chandra module if, for some subalgebra k ⊂ g, M is locally k-finite and has finite k-multiplicities. We believe that the problem of classifying all irreducible generalized Harish-Chandra modules could be tractable. In this paper, we review the recent success with the case when k is a Cartan subalgebra. We ...
متن کاملGENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013